Indefinite Integral formula| Mathematics Formula pdf

author
4 minutes, 6 seconds Read

Indefinite Integral Formula

INTEGRATION It is the inverse process of differentiation. If the derivative of F(x) is f(x) then we say that the antiderivative or integral of f(x) is F(x) and we write,

∫f(x) dx = F(x)

Thus,
d/dx[F(x)]=f(x) ⇒ ∫f(x) dx = F(x)

Example
Since

d/ dx(sin x) = cos x, we have ∫cos x dx = sin x.

Moreover, if C is any constant then d/dx(sin x +C) = cos x

So, in general, ∫cosx dx = (sin x +C)
Clearly, different values of C will give different integrals.
Thus, a given function may have an indefinite number of integral Because of this property, we call these integrals indefinite integrals.

Thus,

d/dx[F(x)]=f(x) ⇒ ∫f(x) dx = F(x)+C

, where C is constant called the constant of integration. Any function to be integrated is known as an integrand.

The following two results are a direct consequence of the definition integral.

Theorem –

∫xⁿdx={(xⁿ⁺¹)(n+1)}+C, when n ≠ -1

Proof

we have , d/dx (xⁿ⁺¹)(n+1)

      =(n+1)xⁿ/n+1

      =xⁿ

∴ ∫xⁿdx={(xⁿ⁺¹)\(n+1)}+C

for e.g

∫x⁶dx =x⁶⁺¹/(6+1) + C

       =x⁷/7+C

Theorem

∫(1/x)dx=log|x|+C, where x≠0

Proof Clearly,either x>0 or x<0

Case 1 When x>0

in this case, |x|=x

∴ d/dx[log|x|]=d/dx(logx) =1/x

so,we have ∫(1/x)dx=log|x|+C

Case 2 When x<0

in this case, |x|= -x

∴ d/dx[log|x|]=d/dx[log(-x)] =-1/-x =1/x

so,we have∫(1/x)dx=log|x|+C

Thus,from both the case ,

we have∫(1/x)dx=log|x|+C

Some Standard Results on Intergration

Theorem

d/dx{∫f(x)dx}=f(x)

Proof

 Let ∫f(x)dx=F(x)    ....(i)

Then,

d/dx{F(x)}=f(x) [by def. of integral]

∴ d/dx{∫f(x)dx}=f(x) [using (i)]

Theorem

∫k.f(x)dx=k.∫f(x)dx, where k is constant

Proof

Let ∫f(x)dx=F(x)     ....(i)

Then,d/dx{F(x)}=f(x) ....(ii)   

∴ d/dx{k.F(x)}=k.d/dx{F(x)}

=k.f(x) [using (ii)]
so,by the definition of an intergral, we have

∫k.f(x)dx= k.F(x)=k.∫f(x)dx [using (i)]

Theorem

(i)∫{f₁(x)+f₂(x)}dx =∫f₁(x)dx+∫f₂(x)dx

Proof Let

∫{f₁(x)dx=F₁(x) and ∫f₂(x)dx=F₂(x) …….(i)

Then,

d/dx{F₁(x)}=f₁(x) and d/dx{F₂(x)}

= f₂(x) ……(ii)

Now, d/dx{F₁(x)+ F₂(x)}

=d/dx {F₁(x)} + d/dx{F₂(x)} 

=f₁(x)+f₂(x)    [using (ii)]

∴ ∫{f₁(x)+f₂(x)}dx=F₁(x)+ F₂(x)

                         =∫f₁(x)dx+∫f₂(x)dx  [using(i)]

Evaluate

(i) ∫6ˣdx
solution
=∫6ˣdx
=6ˣ/log6 +C

Answer = 6ˣ/log6 +C

(ii) ∫(3sinx-4cosx+5sec²x-2cosec²x)dx

solution
=∫(3sinx-4cosx+5sec²x-2cosec²x)dx
= 3∫sinxdx-4∫cosxdx+5∫sec²xdx-2∫cosec²xdx
= 3(-cosx) – 4sinx + 5tanx – 2(-cotx)+C
= -3cosx – 4sinx+5tanx+2cotx+C

Answer= -3cosx – 4sinx+5tanx+2cotx+C

(iii) ∫tan²xdx

solution
=∫tan²xdx
=∫(sec²x-1)dx
=∫sec²xdx -∫dx
=tanx-x+C

Answer=tanx-x+C

(iv) ∫cot²xdx

solution
=∫cot²xdx
=∫(cosec²x-1)dx
= ∫cosec²xdx -∫dx
= – cotx- x +C

Answer = – cotx- x +C

(v) ∫{(1+sinx)/(1-sinx)}dx

solution
= ∫{(1+sinx)/(1-sinx)}dx
= ∫{(1+sinx)(1+sinx) /(1-sinx)(1+sinx)}dx
= ∫{(1+sinx)²/(1-sin²x)}dx
= ∫{(1+sin²x+2sinx)/cos²x}dx
= ∫(1/cos²x+sin²x/cos²x+2sinx/cos²x)dx
= ∫(sec²x+tan²x+2secxtanx)dx
= ∫(2sec²x-1+2secx tanx)dx
= 2∫(sec²x)dx-∫1dx+2∫(secx tanx)dx
= 2tanx-x+2secx+C

Answer = 2tanx-x+2secx+C

(vi) ∫{secx/(secx+tanx)}dx

solution
[∴sec²x+tanx²=1]
=∫{secx/(secx+tanx)}dx
∫{(secx)(secx-tanx)/(secx+tanx)(secx-tanx)}dx
=∫{(sec²x-secx tanx)/(sec²x+tan²x)}dx
=∫(sec²x-secx tanx)
=∫(sec²x)dx-∫(secx tanx)dx
=tanx – secx +C

Answer=tanx – secx +C

(vii) ∫{(4-5cos)/(sin²x)}dx

solution=∫{(4-5cos)/(sin²x)}dx
=∫{4/(sin²x) -(5cos)/(sin²x)}dx
=∫(4cosec²x-5cosecx cotx)dx
=∫(4cosec²x)dx-5∫(cosecx cotx)dx
= 4(-cotx)-5(-cosecx) +C
= -4cot+5cosecx+C

Answer = -4cot+5cosecx+C

(viii)∫(1/sin²xcos²x)dx
solution
= ∫(1/sin²xcos²x)dx [ ∴ sin²x+cos²x=1]
= ∫{(sin²x +cos²x)/sin²xcos²x)}dx
∫{(sin²x/ sin²xcos²x)dx+cos²x)/sin²xcos²x)}dx
=∫{(1/cos²x)+(1/sin²x)}dx
=∫(sec²x)dx +∫(cosec²x)dx
= tanx – cotx +C

Answer = tanx – cotx +C

(ix) ∫(cos2x/sin²xcos²x)dx
solution
=∫(cos2x/sin²xcos²x)dx
= ∫{(cos²x-sin²x)/(sin²xcos²x)}dx
= ∫{(1/sin²x)-(1/cos²x)}dx
= ∫(1/sin²x)dx-∫(1/cos²x)dx
= ∫cosec²xdx -∫sec²xdx
= -cotx-tanx+C

Answer = -cotx-tanx+C

Some Question for you
Evaluate
(i)∫sin⁻¹(cosx)dx
(ii)∫tan⁻¹(secx + tanx)dx

ये भी पढ़े….

1- Circular Motion in hindi pdf | Physics notes

Similar Posts

Leave a Reply